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Abstract

In the midst of Africa’s mining boom, communities downstream from industrial
mines face increased exposure to toxic waste. Yet, the effects of induced water pollu-
tion on the local population’s health have not been quantified at the continental scale
of Africa, due to data limitation and non-random exposure. This paper investigates
this question using a new quasi-experimental design and a novel dataset detailing the
location and opening dates of all known industrial mines, obtained through inten-
sive manual data collection. We combine geo-coded information on 2,016 industrial
mines with health outcomes from the Demographic and Health Surveys (DHS) from
1986 to 2018 in 26 African countries. Through a staggered difference-in-difference
strategy, we compare villages downstream and upstream of mines before and after
their opening and find a 25% increase in 24-month mortality rates downstream. The
effect is mainly observed among children who were no longer breastfed, confirming
that water pollution drives the results. Our analysis rules out other mechanisms like
fertility changes, access to facilities, in-migration, conflicts and income effects. The
impact intensifies during mine operation and high international mineral prices, is
higher in densely mined regions, and fades out with distance. From a public policy
perspective, this paper underscores the significant local costs of mine openings on
the environment and the health of the surrounding populations.
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1 Introduction

Metal mining contamination of rivers and floodplains affects 23 million people world-
wide by exposing them to high levels of toxic waste |[Macklin et al., |2023|. The surge
in commodity prices since the 2000s has led to a significant increase in industrial min-
ing activity across Africa, raising alarming concerns regarding environmental degradation
[Taylor et al. |2009; Edwards et al., 2013] and adverse health effects among local com-
munities. The ore extraction processes release toxic waste and heavy metals, posing a
significant risk of contaminating nearby water resources. Human health can be directly
affected through ingestion, inhalation and absorption of metal-contaminated water and
indirectly through the food derived from soil-based agriculture. High blood metal levels
can cause newborn malformation, neurological issues, heart problems, organ dysfunction,
and raise cancer risk. They are especially harmful for children at a stage of rapid biolog-
ical development. However, the impact of water pollution on the health of local African
populations remains unquantified due to limited data availability and non-random expo-

sure.

This paper investigates the local impacts of industrial mining-induced water pollu-
tion on local communities’ health in Africa. We exploit the temporal and geo-spatial
sources of variation and find evidence of water-pollution exposure through a staggered
difference-in-difference (DiD) strategy. By comparing health outcomes downstream and
upstream of mines before and after their opening, we indirectly assess mining-induced
water pollution. We mainly focus on infant mortality, given the significant effects of pol-
lutants absorption during early biological development. We also look at the effects on
other children’s health outcomes such as anthropometric measures and anemia, as well
as women’s health and fertility outcomes. We provide the most extensive dataset, to the
best of our knowledge, on the location and timing of all known industrial mines in Africa.
Using the SNL Metals and Mining database, we supplemented by intensive manual data
collection the mines’ opening dates by reading mining companies’ reports and looking at
historical satellite images. We combine geo-coded information on 2,016 industrial mines
with health outcomes from the Demographic and Health Surveys (DHS) spanning from
1986 to 2018 over 26 African countries. For each mine and surveyed area, we deter-
mine the topographical relationship using the geocoded information from HydroSHEDS,

which delineates water basins and builds the upstream-downstream network of each basin.

Our paper’s main finding is to show that the opening of a mine leads to detrimental

impacts on downstream child mortality, mainly due to increased exposure to water pol-



lution. Our main result reveals an increase from 8.7 to 10.9% in the 24-month mortality
rates for children born downstream after a mine opening, compared to those born up-
stream where mortality rates remain stable. This 2.2 percentage points (p.p.) increase
represents a 25% higher mortality rate in downstream areas following a mine opening.
We find an increase in the downstream 24-month mortality rates only for children who
were no longer breastfed after 6 months. This result underscores the protection provided
by breastfeeding [VanDerSlice et al., [1994} Fangstrom et al., 2008| and confirms that the
results are mainly driven by water pollution. Additionally, we find no effects on other

surviving children’s health outcomes.

What drives these detrimental effects of industrial mining activity on health? We
demonstrate that the results are the impact of water pollution and run several analyses to
exclude other potential mechanisms. First, we establish that the impact on child mortal-
ity is independent from changes in women’s health outcomes or fertility patterns. After a
mine opening, we in fact observe no significant effects on fertility, pregnancy, miscarriage,
anemia or sexually transmitted infections (STIs) in both downstream and upstream ar-
eas, and with no significant differences between the two areas. Then, we show that our
results are not explained by an improvement in local welfare in upstream areas, by looking
at different facilities such as access to piped water, flushed toilets, electricity, or health
centers. Our results remain robust when including children living neither upstream nor
downstream of the mine in the control group. This strengthens the control for income
effects associated with mining activity and allows for a more accurate identification of
the impact of water pollution. We identify an increase in the proportion of migrants
downstream compared to upstream after a mine opens. Yet, our findings on mortality
rates remain robust even after controlling for in-migration, indicating that the impact
is primarily driven by water pollution. We also show that our results are robust when

controlling for the presence of conflicts.

We conduct heterogeneity analyses showing that the more intense the mining activity,
the higher the intensity of water pollution and its effects on mortality. The effect of the
opening of a mine on downstream populations increases with the intensity of production,
proxied by yearly international mineral prices, and mainly occurs while the mine is active,
with downstream mortality rates reaching a 40% increase. We also find that the effect
on mortality increases with surrounding mine density and that the effect fades out with
the distance between villages and the industrial mining site. Moreover, in line with in-

tensive extraction processes, we find that the increase in downstream mortality is mainly



driven by the pollution caused by open-pit mines and by foreign-owned only mines. Ad-
ditionnally, the heterogeneity analysis reveals a higher impact in areas dependent on the
agricultural sector, where crucial water resources intersect with extensive and intensive
extraction processes. We observe a larger effect in rural areas, with a 40% increase in
downstream mortality rates. Lastly, the event study shows that the effects are significant

in the medium run, and up to a decade after the mine opening.

Our findings are supported by a battery of robustness checks. Our results are robust
when using a balanced sub-sample of DHS repeated cross-sections and when using the [de
Chaisemartin and d’Haultfceuille, 2020| estimator to address negative weights and het-
erogeneous treatment effects in a staggered adoption design. To account for measurement
errors, we implement corrections for DHS random displacement and restrict the analysis
to the mines with precise coordinates. Additionally, we control for spatial correlation,

and run spatial and temporal randomization inference tests.

Our job market paper provides a quantitative foundation to draw policy implications
to help resource-rich developing countries conduct sustainable mining. It highlights the
need for more stringent public policies, pointing out the insufficiency of existing policies.
Our study challenges the effectiveness of the Extractive Industries Transparency Initiative
(EITI), launched in 2002, which mandates member countries to disclose mining activity
information and to improve governance of their extractive industries. Performing a back-
of-the envelope calculation, we show that over 9,200 deaths per year can be attributed to
water pollution induced by industrial mines in the 26 African countries of our analysis.
Since this effect holds even for the 18 countries that participate in the EITI, this result
demonstrates the ineffectiveness of the EITT in mitigating the adverse impacts of water
pollution. This emphasizes the urgent need for the implementation of more rigorous poli-

cies, alongside the necessity to quantify the magnitude of the impact of such policies.

This paper contributes to the environmental literature on the health impacts of in-
dustrial activities and natural resource extraction. It enhances the ongoing debate on the
health-wealth trade-off of industrial mining by highlighting water pollution as a signifi-
cant negative externality impacting both the environment and human health in developing
countries. We contribute to prior research by adopting a unique quasi-experimental de-
sign which enables us to identify water pollution and departs from the distance-based
proxy used in the literature to study the effects of exposure to industrial mines. We

also create a new database detailing the opening dates of industrial mining sites that



complements the most extensive database on the location of industrial mines in Africa.
Through these two main contributions, our research introduces a novel continental-scale
upstream-downstream comparison in Africa to shed light on the health e ects of water-
induced pollution.

The remainder of the paper is organized as follows. Section 2 reviews the literature
and presents our contributions. Section 3 describes the context and the data. Section 4
details the methodology and the main empirical strategy. Section 5 introduces the main
results, while section 6 investigates the mechanisms, and section 7 the heterogeneity of
the results. Section 8 looks at the dynamic e ects, and section 9 at the intensive margins,
digging into the heterogeneity of the results according to the distance to the mine, the
mining density, and the production intensity. Section 10 proposes a list of robustness
checks and placebo tests. Section 11 discusses the limits of the study and section 12
proposes a policy discussion. Eventually, section 13 concludes.

2 Literature review and contributions

This section rst presents the literature on the trade-o of mining activity in developing
countries. It then describes the mining-induced pollution literature and the economic
literature on the health e ects of mines. Lastly, we discuss the issues emerging from this
literature and the solutions we propose to tackle them.

2.1 Trade-o of mining activity

Our work is related to the strand of literature analysing the health-wealth trade-o of
industrial mining activity in developing countries, the results of which are still under de-
bate. If mining can improve health and well-being through local industrial development,
it can also damage health through negative externalities such as con icts, massive mi-
gration waves, and exposure to harmful pollution. Determining which of these e ects is
predominant is still debated in the literature studying the relevance of a natural resource
curse [van der Ploeg, 2011; Cust and Poelhekke, 2015; Venahles, 2016].

At a broad scale of analysis, Mamo et al| [2019] look at the e ects of the discovery
of industrial mining deposits in Sub-Saharan Africa. They nd an increase in district-
level night light emissions, but no signi cant e ects on household wealth.They nd

Household wealth was measured using the dimensions of access to electricity, wealth index, urban-
ization, mortality, and education.



temporary positive e ects on public service provisions, but a degradation of the sewage
system and piped water supply in the medium and long run. Mining also creates neg-
ative e ects on the environment and agricultural productivity. Aragén and Rud [2016]

nd that the expansion of large-scale gold mining in Ghana (1997-2005) is responsible
for the agricultural total factor productivity decrease in the vicinity of mines. The use

of cross-sectional satellite imagery depicting NO2 concentration suggests that air pollu-
tion is the main explanatory factor. Dietler et al. [2021] analyze a panel of 52 mines in
Sub-Saharan Africa using the same DHS and SNL databases. They nd improvements in
access to modern water and sanitation infrastructure after a mine opens when comparing
individuals living within 50 kilometers of an isolated mine. Yet, proxying exposure to
mining activity with distance and focusing on areas with low mining density raises many
identi cation issues that will be largely discussed in section 2.4.1. Our paper deals with
these issues and encompasses a wider sample of mines. Other negative externalities of
mining activity are the increase of rapacity and corruption and the trigger of insecurity
and con icts [Berman et al., 2017], migration ows of mine workers fueling the spread of
infectious diseases such as HIV [Corno and de Walque, 2012], and the discouragement of
educational attainment among children [Atkin, 2016; Ahlerup et al., 2020; Malpede, 2021].

Our paper focuses on industrial mining and does not encompass artisanal and small-
scale mining (ASM). Few papers have looked at the e ects of ASM, mainly due to data
limitations. Bazillier and Girard [2020] compare the local spillovers between artisanal and
industrial mining sites in Burkina-Faso. They nd that the present of artisanal mining
(labor intensive and managed in common) and an absence of industrial mines (capital
intensive and privatized) have positive impacts on household consumption. Our paper
focuses on the e ects of industrial mining pollution. If ASM has severe e ects on miners'
health due to hazardous working conditions, it is likely to be of a smaller magnitude
than industrial mining, which extracts and treats larger volumes of minerafs If ASM is
often accused of generating more severe pollution than the industrial sector because of
their illegal use of mercury?, the latter often use cyanide instead. Both chemicals being
highly toxic pollutants, focusing on industrial mining only is a lower-bound analysis of
the impacts of mining activity on the health of local populations.

2Industrial mines are responsible for 80% of gold production and 75% of diamond production Mc-
Quilken and Perks [2020].

3Mercury has been o cially banned in over 140 countries (Minamata Convention on Mercury, adopted
in 2013).



2.2 Mining-induced pollution

Each stage of industrial mining activity produces chemicals and minerals likely to pollute
the surrounding air, water, and soil [Coelho and Texeira, 2011]. The exploration and
prospecting stage can last several years before a mine is considered economically viable
and worthwhile to open. Meanwhile, mining companies conduct mapping and sampling,
as well as drilling, boreholes, and excavations that require both physical and chemical
measurement methods likely to pollute the surface and underground, depending on the
nature of the deposit in the targeted area. If found nancially viable, the company
launches the discovery phase where the design and planning of the construction are un-
dertaken. The feasibility study of the project requires further exploration and engineering
studies. Subsequently, the development stage takes place and the mine's infrastructure
and processing facilities are constructed. It is only after all these stages that produc-
tion can start. Once the deposit is exhausted comes the closure and reclamation stage,
during which the company is supposed to clean, stabilize and rehabilitate the land and
isolate contaminated material. Yet, it is common that waste, tailings, or retention dams
are abandoned without care or maintenance, which can constitute a potential disaster if
hazardous materials leak and are discharged into the environment. Figure 28 in the Ap-
pendix proposes a scheme to explain the life cycle of a mine. Figure 27 displays satellite
images of the di erent stages of the Essakane mine, an open-pit gold mine in Burkina-Faso.

Throughout all these stages, di erent types of pollution can be engendered. Air pol-

lutants can be carried over long distances by dust, ore transportation and the wind; they
can damage the surrounding soil and crops, and be inhaled, mostly by mine workers but
also by the local population. The leakage of pollutants into the air can also a ect water
through acid mine drainage that ends up polluting rst the surface and then groundwater.
During the digging and processing to extract the targeted ore from waste rocks, rocks are
crushed and then go through either heap leaching, froth otation, or smelting. These
techniques require the addition of chemicals, such as cyanide or acid, that can separate
the targeted minerals from waste. Moreover, these processes are water-intensive and need
access to a water source in competition with the local demand. Last but not least, even
without the use of these chemicals, leaching happens through the contact of water and
oxygen with sul de minerals contained in the extracted rocks, which accelerates the acid-
i cation process and modi es the pH level of water bodies. Pollutants can be released
into the environment during the process by spills or after by leaks of humid waste stored
in retention dams, but also through the erosion and sedimentation of solid waste that is
piled in the tailings around the mining site and drain into the soil with rain. The waste



actively pollutes during the entire life cycle of the mine, starting with its opening and
during production, but can also continue to pollute when a mine closes and is left without
maintenance. This is the case when retention ponds are not covered and dry, allowing
this waste to go directly into the environment.

Few papers have managed to show to what extent industrial mining activity creates
negative externalities on the environment. Bialetti et al. [2018] look at the e ects of
mining industries on deforestation in India. Von der Goltz and Barnwal [2019] have sug-
gested the mechanism of water pollution but without strong empirical evidence (looking
at anemia). Yet, in-situ measurements have shown the contamination of potable water
sources by harmful levels of nitrate, turbidity, iron, cadmium, manganese, and arsenic
due to industrial mining sites [Cobbina et al., 2013]. To our knowledge, we are the rstto
provide indirect, systematic, and large-scale evidence of the mechanism of water pollution
caused by industrial mining activity.

The main toxic metals released by mining sites are arsenic, cadmium, copper, lead,
mercury, and nickel. Depending on their blood level concentration, they can be essential
or non-essential for human health [El-Kady and Abdel-Wahhab, 2018]. However, heavy
metals released by mining activity are non-biodegradable, have long-term impacts on the
environment, and are found at abnormally high concentrations in the vicinity of mines,
within the solil, water resources, vegetation, and crops [Oje et al., 2010; Dike et al., 2020].
People living in that environment are exposed to high quantities of heavy metals through
ingestion, dermal contact, and inhalation of soil particles, which can cause several impli-
cations for their health. High blood metal concentrations are associated with neurological
e ects (which induce behavioral problems, learning de cits, and memory loss, especially
among children) [Dike et al., 2020], neurodegenerative diseases, cardiovascular e ects, gas-
trointestinal hemorrhages [Obasi et al., 2020], organ dysfunction (kidney, decrease of the
production of red and white blood cells, lung irritation) [Bri a et al., 2020], higher proba-
bility of cancer development [Madilonga et al., 2021; Obasi et al., 2020], but also a higher
probability of infertility, miscarriages, and malformation of newborns [Bri a et al., 2020].
Thus, exposure to heavy metals has a detrimental e ect on human health in general and
child health in particular, especially during their rst months of development, both in-
and ex-utero [Coelho and Texeira, 2011]. Children at an early age are the most sensitive,
even to low concentrations of heavy metals, as they are at a stage of rapid biological de-
velopment, but also as they are more exposed through higher blood concentrations linked
to incidental ingestion of urban soil and dirty water (less conscious of their environment



and danger, playing with polluted soil, eating and drinking without care [He et al., 2020]).

2.3 Health e ects of mining activity

The empirical economic literature on the local e ects of mining on local communities has
grown during the past decade, yet the debate on the costs and bene ts, and the positive
and negative impacts of industrial mining activity in developing countries, remains. Di-
verse results have been found on the e ects on health, and there is still uncertainty on the
direction and magnitude of the impacts of mines on the health of the local population.
Additionally, even if geographical proximity to a mining site is usually used as a proxy
for pollution exposure, few papers observe the negative externalities on the environment
and its consequences on health.

Papers studying the e ects of industrial mines on health proxy the exposure to mining
activity by the distance to the mine, and di erent thresholds and mixed results can be
found in the literature. Using cross-section data in the state of Orissa in India, Shubhayu
et al. [2011] use the distance to the mine as a proxy to measure environmental e ects,
and nd that individuals living near a mine report higher respiratory illness and more
work days lost due to malaria. Cross-sectional data prevent identifying a clear causal re-
lationship and from adjusting to speci c time and spatial confounders. Benshaul-Tolonen
[2018] uses a DiD strategy, comparing individuals living within 10 kilometers to those
living between 10-100 kilometers of a mine, before and after its opening. The paper nds
that large-scale gold mining in nine countries of Sub-Saharan Africadecreases infant
mortality within 10 km during the opening and operating phases, with no e ect on fur-
ther communities (10-100 km). Cossa et al. [2022] use a similar methodology studying a
broader set of countries and nd a decrease in child mortality as well.

Von der Goltz and Barnwal [2019] assess the e ects of industrial mines in 44 developing
countries from 1988 to 2012. The paper also relies on a DiD strategy, comparing house-
holds living within 0-5 km with households living between 5-20 km before and after the
opening of a mine. They nd gains in asset wealth, increased anemia among women, and
stunting in young children. As anemia and growth de ciencies are argued to be mainly
the consequences of exposure to lead, the observed e ects on health are interpreted to
be the result of pollution due to metal contamination and lead toxicity. They nd that
women in mining communities show depressed blood hemoglobin, recover more slowly

4Burkina Faso, Ivory Coast, the Democratic Republic of the Congo, Ghana, Guinea, Ethiopia, Mali,
Senegal, and Tanzania between 1987 and 2012.



from blood loss during pregnancy and delivery, and that children in mining communities
su er some important adverse growth outcomes from in-utero exposure (stunting).

2.4 Challenges and contributions

The most common way to proxy exposure to mining activity is to rely on the distance to
an active or open mine; however, there is no clear consensus on which threshold to use,
and the treatment allocation seems arbitrary. The disparity in the results of the literature
could be explained by di erences in terms of empirical strategies and distance choices.
Beyond this, using the Euclidian distance to a mine as treatment raises endogeneity
concerns. This subsection discusses the main issues that arise when studying the local
impacts of industrial mining activity on health.

2.4.1 Endogeneity issues

In this section, two challenges are discussed: the endogeneity issues that arise: (i) when
using the Euclidian distance as a proxy for exposure to mining activity; and those when
using (ii) repeated cross-sectional data such as the DHS.

Using the interaction between being close to a mine and the mine's activity status
raises endogeneity concerns. For instance, Von der Goltz and Barnwal [2019] use a mine
panel and pair each DHS village to its closest mine. This creates an unbalanced treat-
ment and control groups, and such an imbalance might be endogenous to socio-economic
outcomes or polluting behaviors. As each village is paired to its closest mine, tlls
facto excludes group villages that are in both distance categories (within 5 km of mine A
but 5-20 km of mine B) from control group. Thus, there is a higher probability of being
treated in areas with high mining density, which is not a random allocation. As a mine
xed-e ect identi cation relies on a within-mine bu er-area comparison, the estimator is
driven by mines that have been paired to villages both in the treated and control areas,
which is correlated to the mining density of the region. The estimation endogenously
selects mines from regions of low or middle mining importance, which might be correlated
with the intensity or the type of pollution and the socio-characteristics of the neighbor-
ing population, and thus the way health is a ected by pollution. To reduce endogeneity
issues, Von der Goltz and Barnwal [2019] instrument the mine location with mineral de-
posit information from S&P, which are deposits that are being explored or prepared for
exploitation. However, mining exploration is not a random allocation and raises the same
concerns as it is directly correlated with mining density. Benshaul-Tolonen [2018] reduces
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endogeneity issues linked to the pairing by using an administrative district xed-e ect
panel and extending the distance (10-100 km), but the same concern remains.

A second concern is linked to the nature of the DHS data, which are repeated cross-
section surveys. The literature argues that the conditions for an industrial mine to settle
are the presence of mineral deposits, which is considered random. However, the presence
of a mine and of a declared mineral deposit is correlated with the population density.
As mining exploration is labor intensive, it is more likely to occur in dense areas where
DHS is more likely to have surveyed individuals. A treatment allocation based on geo-
graphical proximity to the mine is endogenous: treatment groups close to the mine might
not be comparable to control groups located further. As district xed-e ect relies on a
within-district comparison, the estimation is driven by districts with both control and
treated groups, before and after a mine opening, which is correlated with the probabil-
ity of being surveyed. As DHS renews the surveyed villages at each wave, and as the
probability of being surveyed is determined by the population density, the estimation is
driven by specic areas. The regressiode facto and endogenously selects districts that
were already dense before the opening and remained so after. This might be areas that
are more stable, well-o , and where individuals might be less a ected by pollution. This
might bias the estimation upward (i.e., less mortality linked to mining activity), and ex-
plain the positive e ect of mines that Benshaul-Tolonen [2018] nds on mortality in Africa.

In Appendix section G, we propose a replication analysis of Benshaul-Tolonen [2018],
taking advantage of our manual-entry work which extends the SNL database. We nd
similar results as Benshaul-Tolonen [2018], using the same set of countries and our ex-
tended sample of mines (using only, gold mines as in Benshaul-Tolonen [2018]). However,
when applied to our more comprehensive sample, meaning when including other African
countries and industrial mines, we nd that are results are no longer signi cant, which
suggests that the e ects are context and regional-dependent.

2.4.2 Upstream-downstream analyses

Using geographical distance to a mine as treatment allocation raises endogeneity concerns.
An upstream-downstream analysis, which relies on a topographical comparison, reduces
these concerns as individuals from similar distances are compared.

Few papers have dealt with upstream and downstream at the scale of a continent, since
it requires much more computational capacity and a complex pairing methodology. Du o
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and Pande [2007] study the productivity and distributional e ects of large irrigation dams

in India and use river networks to calculate gradients computed from digital elevation
maps for India. Do et al. [2018] use river networks and data from pollution monitoring
stations in India to conduct their upstream-downstream analysis. Unfortunately, this is
not possible in our case study due to the absence of water quality data from Africa as a
whole. Garg et al. [2018] use river networks in Indonesia and re-calculate the upstream-
downstream relationship between village pairs using a 30m resolution Digital Elevation
Model. Their very re ned level of study is not likely to be undertaken at the scale of
the African continent in our case, so we chose secondary data computed by hydrologists
(HydroSHEDS). We use systematic and highly disaggregated data on water sub-basins
that enable us to encompass a wider set of countries, overcoming the issue of pairing
a mine or a village with the closest river, since there is uncertainty about whether this
point is located above or below the level of the river in altitude. Strobl and Strobl [2011]
studied the distributional e ects of large dams on agricultural productivity at the scale

of the African continent, using Pfafstetter level 6 with an average area of 4200 kmOur
study takes into account sub-basins at the Pfafstetter level 12, with an average area of
100 kn¥.

3 Data and Context

This section describes the data used for our empirical strategy, and some descriptive
statistics in the context of industrial mining and child mortality in Africa.

3.1 Data

In this paper, we match socio-economic data from the Demographic Health Surveys to an
industrial mining database provided by SNL Mining and Metals.

3.1.1 Health and socio-economic data

We use all available survey rounds from the Demographic Health Surveys that contain
GPS coordinates, from 1986 to 2018, covering 36 out of 54 African countries. We then
select all the countries which have at least two survey waves to be able to implement our
DiD strategy with a su cient time length before and after the opening of a mine, and

end up with 26 countries, 12,442 clusters, and 240,431 children under the age of ve.

5The list of countries within our sample are: Benin, Burkina Faso, Democratic Republic of Congo,
Burundi, Cote d'Ivoire, Cameroon, Ethiopia, Ghana, Guinea, Kenya, Liberia, Lesotho, Madagascar, Mali,
Malawi, Nigeria, Niger, Namibia, Rwanda, Sierra Leone, Senegal, Togo, Tanzania Zambia, and Zimbabwe
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We consider that doing a DID strategy on the sample of countries that only have one
round of the survey, hence a maximum period of ve years, will not enable us to capture
the longer-term e ects of mining activity®. Table 23 in the Appendix displays the DHS
survey years and countries that we use for our analysis.

We construct the variables of child mortality based on the DHS child recode database,
which has information on the age and death of children under ve years old, whose
mothers are aged between 15-49 years old. Our dependent variable is the probability of
12-month and 24-month mortality for each DHS cluster (i.e., for each child, we construct
a dummy variable equal to 1 if she or he is alive and 0 if not, conditional on having
reached 12 and 24 months respectively). We also estimate the e ects of mining activity
on biomarker variables and other indicators of occurrences of iliness (diarrhea, fever, and
cough) within two weeks preceding the day of the interview among young children. We
extend our analysis to women's fertility behavior and health: current pregnancy, total
lifetime fertility, miscarriage, and anemia. Finally, as the aim of this article is to isolate
the mechanism of water pollution, we use the questions from the DHS on the main source
of drinking water, the presence of ushed toilets, electricity, and the access to healthcare
facilities to control for households' sanitary and economic environment.

3.1.2 Mineral resource exploitation data

The industrial mining variables come from the SNL Metals and Mining database, which
is privately owned by S&P Globaland on license€’. The SNL database is the best existing
panel of mine production, providing information on the location, the dates of opening
and closure, the commaodity type, and the yearly production (for some mines). This is a
non-exhaustive panel of industrial mines in Africa, yet to our knowledge, it constitutes
the most comprehensive sample of mines giving the timing of the industrial activity. This
dataset has been intensively used in the literature and argued to be the best product
available ([Aragon and Rud, 2016; Berman et al., 2017; Kotsadam and Tolonen, 2016;
Benshaul-Tolonen, 2018; Von der Goltz and Barnwal, 2019; Mamo et al., 2019]). We em-
phasize, here, that this paper focuses on the e ects of industrial mining, and that we do
not include ASM for which there is no available data in the SNL database.

6Please note that our nal sample does not include Egypt, which has 7 DHS waves and is a well-known
mining country. This is explained by the fact that the SNL database characterized Egypt as part of the
Middle East rather than in Africa and thus was dropped from our sample.

"We are grateful to CEPREMAP, PjSE, EHESS, and the GPET thematic group of PSE for their
nancial support and their help in purchasing access to the data.
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Overall, the SNL database gathers data for 3,815 industrial mines in Africa from 1981
to 2021. Of these, 2,016 mines were located within 100 km of a DHS cluster from a coun-
try with at least two surveys. For our DiD strategy, we need information on the timing
of the start of mining production. The SNL database provides this information for 278
mines and we manually retrieved the start-up year for the 1,738 remaining mines. The
manual collection of data was realized using information on mining history available in
the SNL database, and mine reports (cross-checked with Google Maps and aerial images).
We describe the manual collection of data more extensively in Appendix B.2.

We build three main variables from the SNL Mining and Metals database by relying
on geocoded information and the opening date of the mine. According to the estima-
tion strategy, we will use a variable of proximity (distance to the closest mine), position
(whether individual i is upstream or downstream), and a dummy variable for being open
or not. Opening dates that were available in the SNL database were computed by the
SNL team, and indicated the actual startup year of the mine, i.e., when production rst
began. We used the same criteria for the data we collected. Finally, we restrict the
main analysis that is associated with heavy metal mines (metals with density higher than
5g=cnB ([Bri a et al., 2020]), which are the metals listed in Table 27 in Section C.2 of
the Appendix). We also include coal mines, as their extraction is associated with mercury
and arsenic, which are highly toxic heavy metals.

3.1.3 Water basins

We consider the topographical relationship of water basins where mines and villages are
located. A water basin is an area where all the surface water converges towards the
same point. We use the HydroBASINS sub-basins geographical information provided
by HydroSHEDS, which delineates water basins consistently and subdivides sub-basins
into multiple tributary basins to the network of nested sub-basins at di erent scales.
Following the topological concept of the Pfafstetter coding system, each polygon of the
sub-basin has a unique direction ow and provides information on up- and down-stream
connectivity. We take the nest Pfafstetter level (12 out of 12) that breaks sub-basins
down to an average area of 10em?2. See Figure 6a for an example. We conduct our
analysis taking into consideration the three closest sub-basins to each industrial mine,
meaning that we take each mine's sub-basin A and tag the one just downstream as B;
the one just downstream of B is tagged C; and the one just downstream of C is tagged
D. Thus, B, C, and D are the three sub-basins closest to A.
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3.2 Descriptive statistics

3.2.1 Mining in Africa

Temporal and spatial variation

Figure 1: Temporal evolution of mine openings

Notes: The data lines plot the number of mines opened each year for the 1981-2019 period,
for all mines, heavy metal mines including coal (sample of the main analysis), and only heavy
metal mines. Panel (a) displays the temporal evolution of the total mine sample, while panel
(b) shows mines that are within the sample of the main analysis, meaning mines that have
DHS clusters upstream at a distance of at most 100 km and DHS clusters downstream within
the three closest sub-basins.

Sources: Authors' elaboration on DHS and SNL data.

Figure 1 shows the evolution of the yearly number of mines that opened in Africa
over the 1981-2019 period, Figure 1 (a) for the entire mining sample and Figure 1 (b) for
mines that are in the sample of the main analysis. The mining boom since 2000 is shown
in the Figure, with the rst peak in 2007, which is in line with the peak in exploration
activity that occurred in 2003 ([Taylor et al., 2009]) (as the exploration phase takes place
on average a couple of years before a mine opens), and the second peak in 2012. For
instance, about 120 industrial mines opened in 2012 (based on the non-exhaustive SNL
database). The Figure also presents the evolution according to the characteristics of the
mines: it distinguishes the pattern for all mines, heavy metal mines, and heavy metals
including coal mines. We observe no di erences in timing patterns between Figure 1 (a)
and (b), nor between mine types.

What is striking in Figure 1 is that the evolution of mine openings follows the same

pattern as the evolution of industrial metal prices, as plotted in Figure 29 in Section
C.2 of the Appendix. The mining boom since 2000 follows the increase in real prices of
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copper, tin, lead, aluminum, zinc, nickel, and other heavy metals, while the sharp fall

around 2008/2009 corresponds to the nancial crisis. The local minimum around 2016
corresponds to the drop in commodity prices in June 2014 ([Khan et al., 2016; Gloser
et al., 2017]). This similar evolution suggests that heavy metal prices are good Instru-
ment Variables for the variable year of mine opening, such as Berman et al. [2017] and
Bazillier and Girard [2020] used in their analyses. In Section 9.3 we will use it as a proxy
for production intensity.

Figure 2 (c) shows the map of the number of mines that opened before 2019, including
mines that opened before 1986, averaged at the cell level (160 km cells). Cells in grey
represent areas where no mine opened before 2019, but where at least one will open in
the future (whether we know from the data that it opened between 2019-2021, or if the
opening is planned for the future). The main mining countries in the SNL database are
Guinea, Sierra Leone, Ivory Coast, Ghana, Niger, Burkina Faso, Zimbabwe, Tanzania,
Zambia, and the north of South Africa. Please note that since we have excluded countries
with only one DHS wave in the main sample of our analysis (cf. Tables 22 and 23), in order
to avoid comparing areas with too many di erences in terms of temporal variations, we
did not undertake the manual-entry work for these countries, which explains why South
Africa (which is not in the nal sample) does not appear as a major mining country in
Figure 2 (c). Figure 3 shows both the temporal and spatial variation of mine openings in
Africa (for all the mines sample, not the restricted one of our main analysis), as it plots
the number of mines that opened over di erent periods of our analysis per grid cell. The
cells in red are areas where no mines opened during the speci ed period, but where at
least one mine had opened before, whereas cells in grey are areas where no mines have
been opened but at least one will open in the future. We observe that the increase in
mine openings was higher during the third period 2008-2019 (which is in line with Figure
1), and was particularly important in West Africa.

3.2.2 Health risks

Africa faces high infant mortality rates as the average 12-month mortality rate is 6%
and the average 24-month mortality rate is 8. % according to DHS data (cf. Table 24).
Figures 2 (a) and (b) plot the average mortality rates for all DHS from 1986-2019 averaged
at the grid level, and show the spatial variation of mortality rates®. Figures 4 and 5 map
both spatial and temporal variation of mortality rates as they show the average mortality

8Please note that the higher the DHS cluster density, the more accurate the average. The spatial
variation is endogenous to the DHS sample.
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rates for the three main time periods of our DHS sample. We observe the global reduction
of mortality over the time period and also the DHS cluster distribution. Figures 31, 32
and 33 plot the same maps for the sample restricted to the one used in the main regression.

17



8T

Figure 2: Outcomes spatial distribution

Notes: Panels (a) and (b) represent the means of 12- and 24-month mortality rates for each DHS wave available (listed in table 23) from
1986 to 2019. Means are computed at the grid level (100 km mean size). The mortality rates are estimated without the children that did
not reach 12/24 months at the time of the survey. Panel (c) displays the stock of mines that opened before 2019 (including mines that
opened before 1986). Means are computed at the grid level (100 km mean size).

Sources: Authors' elaboration on DHS and SNL data.
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Figure 3: Spatial variation of mine openings per period

Notes: This gure shows the number of mines that opened over the grid area (160 km on average) during each period. A red grid cell
represents an area where no mine opened during the period, but where at least one mine open before the period. A grey cell represents an
area where no mine opened during the period, but where at least one mine will open in the future.

Sources: Authors' elaboration on SNL data.
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Figure 4: Spatial variation of 12-month mortality rates per period

Notes: This gure shows the means of 12-month mortality rates averaged at the grid level during each period. The mortality rates
estimated do not include children that did not reach 12 months of age at the time of the survey.
Sources: Authors' elaboration on DHS data.
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Figure 5: Spatial variation of 24-month mortality rates per period

Notes: This gure shows the means of 24-month mortality rates averaged at the grid level during each period. The mortality rates
estimated do not include children that did not reach 24 months of age at the time of the survey.
Sources: Authors' elaboration on DHS data.



4 Empirical strategy

The main empirical strategy of this paper uses the relative topographical position of sub-
basins as a proxy for exposure to mining activity pollution. It compares the e ects on the
health of individuals living downstream of a mine to those living upstream, before and
after the opening of at least one site. It is a staggered-design DiD analysis with two-way
xed e ects at the mine's sub-basin and birth year level. This upstream-downstream
strategy intends to identify the mechanism of water pollution.

As seen in Section 2.4.1, this strategy alleviates some endogeneity issues raised by
treatments using the Euclidian distance as a proxy for exposure to the mine. First, it
reduces the bias linked to unbalanced samples due to endogenous pairing. Second, it
breaks the average e ects based on distance bu ers and highlights the heterogeneity of
the e ects of mining activity on health, while isolating the negative externalities linked
to water degradation.

4.1 Measuring exposure to pollution
4.1.1 Pairing strategy

The pairing of DHS clusters to mines represents a signi cant challenge, as each DHS clus-
ter can be downstream of and close to several industrial sites in major mining areas. It
introduces endogeneity in the sample selection and raises the issue of unbalanced samples.
In this analysis, we propose the following pairing to overcome this issue and thus be able
to measure the exposure to pollution of each DHS cluster.

First, we construct a 100 km bu er around each DHS cluster and register all mines
within this bu er (independently of their activity status). We then categorize the to-
pographical position of the DHS cluster relative to the industrial site using a dummy
variable equal to 1 if the cluster is downstream of the mine and O if it is located upstream.
This topographical position is de ned using the relative position of each sub-basin. As
each cluster and site have GPS coordinates, they lie in a speci ¢ sub-basin, and we used
the relative position of each sub-basin to classify the DHS according to the paired mine.
Through such a process we also have pairs that are located in the same sub-basin, and for
which it is impossible to say exactly whether the cluster is downstream or upstream of the
mine. At this stage, for these specic couples, we consider the DHS to be downstream.
Please note that, as explained in section 3.1.3, we used the nest Pfafstetter level 12 that
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